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\ ABSTRACT
\

iFor continuous observations from time-sequential studies, suitable

Cranr-von Mises and Kolmogorov-Smirnov type (nonparametric) statistics

A036398

(based on linear rank statistics) for testing hypotheses on some multi-

ple regression medels are proposed and studied. Asymptotic theory of
these tests is provided for both the null and (local) alternative hypo-
theses situations and is based on the weak convergence of suitable rank
order processes (on the D[0,1] space) to ceritain functions of Brown-
ian motions. Bahadur efficiency resuits are also presented. Empirical
values of the percentile points of the null distributions of the pro-
posed test statistics, obtained through simulation studies, are also

provided,
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1. INTRODUCTION

In longitudinal (time-sequential) studies relating to clincial
trials and life testing problems, the experimenter sets out to plan
beforehand as to the maximumn number of responses to be observed or the
maximum duration of the experimentation. As the experiment is continu-
ously observed over time, even with this restricted design, the experi-
menter has the option of reviewing the outcome as the experiment pro-
gresscs, enabling him to terminate the experiment at an intermediate
stage if the cumulative evidence indicated by the data at that stage is
streng enough to reject the null hypothesis and further continuation of

experimentation can not lead to a different inference. This pseudo- se-

gquential test procedure (which is distinguished from the classical sequen-

tial test) arises from what is called progressive censoring schems (PCS)
as at the successive censoring time-points (responses or failures), the
test statistics arce based on uncensored subjects only. It may_be men-
tioned that, for the applications of this procedure, it is not necessary
that one works with a restricted design only.

For two-sample location and scale problems as well as the simple
regression model, Chatterjec and Sen (1973) have developed a gencral
class of (linear) rank statistics incorporated for testing under PCS.

In the current investigation, their theory is extended to the multiple
regression problem which includes the multi-sample location problem as
a special case. Also, a wider class of test statistics is considered

here.
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Section 2 is devoted to the basic formulation of the problem. Sec-

tion 3 deals with the development of PCS tests: two different types, viz.
Kolomogorov-Smirnov and Cramér-von Mises, both based on linear rank sta-

tistics, arc considered. Sections 4 and 5 are devoted to the study of

the asymptotic distribution theory of the test statistics under the null

and (local) contiguous alternative hypotheses. Asymptotic (Bahadur-)

relative efficiency results are presented in Section 6. Section 7 deals i
with the simulation study of the null distributions of the proposed test

statistics. In Section 8, comparison of the proposed PCS tests with the

fixed-plan censoring modifications of the Kruskal-Wallis test by Basu

(1967) has been made and the scope of applicability of the PCS tests in

the context of right truncation is discussed.

2. PRELIMINARY NOTICNS

Let {Xi, i21} be a sequence of independent random variables (r.v.)
with continuous distribution functions (d.f.) {Fi, iz 1}, specified by

the model

Fi(x) - F(X-BO-E'SI) T a< X <@ » iZ] ’ (2'1)

where in this conventional multiple regression model, the d.f. F is not i

i b can i s’ et

known, Bo, BY= (Bl,...,Bp) are unknown parametc}s, p(> 1) and {gi' =

(cli""’cpi)’ i21} 1is a sequence of (known) vectors of regression con-

stants. Our concern is to test ' {

Hy: B=0 vs. H;: 820, (2.2) 1




(treating Bo as a nuisance parameter and without assuming the form of
F to be specified), when, in fact, we have a life testing model, as may
be posed below.

For every N( 1), let Z .€...57 be the ordered random vari-
ables corresponding to (Xl""’xN)"* , say; by virtue of the assumed
continuity of the Fi’ tics among the observations may be neglected, in

. . i e = 1 L ' y 2l
probability. Let EN' (RNl,...,RNN) and §N-(SN1,...,SNN) be respec
’ N)

tively the vectors of ranks and anti-ranks of the elements of X“ ', so

that (tics neglected), R =S =1, Jsi<N, X 135N, In

. g e ’
Mni MRyj L ™
a life testing problem, onc typically observes the successive order sta-

tistics {ZNi} along with the corresponding {SNi}’ and based on a part

7y Syps 14 <N}, the problem is to test for Hy in

(2.2). The PCS test is a pscudo-scquential procedure where a early termi-

of the sequence

v 1€1<k
LNi, SNi, L——l—x\}

for some k(< N), the accumulated statistical evidence leads to a deci-

nation of experimentation is feasible if observing {

sive conclusion. Our proposed PCS tests arc based on suitable linear rank
statistics which we introduce in this section. The actual test statistics
will be introduced in the noxt section.

For every N(2 1), wc conceive of a set of scores {aN(l),...,aN(N)}

generated by a score function ¢={¢(u), ue (0,1)} in the following way:

aN([Nu]+ 1) = ¢N(u): 0<u<l , (2.3)

where [s] “denotes the largest integer < s and

N-»c0

. a
lim J {¢N(u)- d(u)}du = 0 ., (2.4)
o




Further, ¢(u) 1is assumed to be expressible as the diffcrence of two

[¢1(u) and ¢2(u)] non-decreasing and square integrable (inside I =

[0,1]) functions. Note that (2.4) holds, in particular, when
aN(i) = E¢(UNi) or ¢(i/(N+1)) , 1<isN, (2.5)

where UV] < e <UNN are the ordered random variables of a sample of size
N from the rectangular [0,1] d.f. 1In order to simplify the notations,

in the sequal, we let

1 1 1
¥ J doydu =0, A = f ¢* (wdu - = J $*(wdu = 1, (2.6)
0 L 0

ay =3 Noyay@=0 and A= o-07' e )%=, 822 0 (2.7

Now, at the k-th stage, the observable random variables are {ZNi'

SNi; 1<i<k}, and based on these, we define

ey gcxen

L e S

by letting
k = . N - ~-1gN :
Ty k™ Zi:l(S’SNi-£N)aN(1) + [Xi=k+1(£SNi'gN):l[(N"‘) Liekep (1))

=Yg F lay(D-a ] (2.9)

- _ osith
where ¢ = N zi:lgi and

-1gN R
(N-k) ") .42, (1) , 1SksN-1,

at (k) = i=ke 1% (2.10)
0, k=0, N,

) where

and, conventionally, we let T, . =0. Note that IN,N-I =TIy

N,0

| el




N 2

IN 0 zizl(gs -E'N (Cl N\{)a (k
Ni

Actually, if we let

a (i) , 1<isk,
by (i) = k=0,1,...,N, (2.12)
’ at(k) , k<isN,

then, we may rewrite T as

N,k
Bk ™ Do (B Bty BRyg) » B=BL. N, (2.13)

Note that by (2.7), (2.10) and (2.12), for every 1<k<q<N,

(N-1)" 21 =10y, (Dby )==(N-1)'1{Zk_1 N(l)f»(N -k) [ag ()] }

- o0 ey () - a0 (2.14)

1~ (1)~

() -ag0l?=ag | say

i=k+

2 < ; 2 2 2 2
where AN,k is / in k (0<k<N) and AN,0=O’ AN,N-1=AN,N =AN=1'

Let us also denote

G = Liaa (6 S0 S0 = Wy oy . o (2.15)

and assume that there exists a positive number NO’ such that

E‘N is positive-definite (p.d.), YNBNO . (2.16)

. - (
We may remark that under “0 in (2:2), gN- (“Nl”"’ZNN)

Ry (and §,) are stochastically independent; Ry (and  $,) assumes

and

all possible permutations of (1,...,N) with the equal probability (Nl).l

Hence, from (2.13)-(2.15), we obtain by some routine computations that




E(IN,kIHO) =0, 0sksN; (2.17)

|n ) = A2 . C 0<k , qsN, (2.18)

E(y, kN, q N,kaq * N ¢

where aAb = min(a,b). Finally, we define

0, k=0,
v,k = ) 1 )% (%.18)
. (ry N, k~N ~V k)~ kak o Ni
Our proposed tests (under PCS) are based on the partial sequence
{LN’k:-OSkSr} ‘ (2.20)
where r 1is any pre-assigned integer, such that
r/N+>68: 0<8<1, as N~»» (2.21)

In reality, mostly & is less than one.

3. PCS RANK ORDER TESTS FOR NO REGRESSION

For every N2r21, we introduce a sequence {kN r(t), tel} of

interger-valued, non-decreasing and right-continuous functions, where

2
kN,r(t) = max{k: AN I N,r} St (3.1)
and A:,k is defined by (2.14). Consider then the process YN,r = {YN,r(t)’
teI}l by letting
Y, (t) = AL tel (3.2)
(s 1N, k (t) « ' I
Thus, YN » belongs to the space D[0,1], endowed with the Skorokhod Jl-

topology. We propose the following two test statistics:




(i) Kolmogorov-Smirnov (KS-) type statistics. We define

S 74
K&,r o t??‘\N,r(t)l

_omax -1
© 0sk<r AN r N k

_ a1 J max 1
=y r{0<k<1 Tk Iy }

Note that, if we let

sl b

- 1
max 1T )4

q<]\(IN q~\'~\lq }: 05](51‘,

then, by definition,

RGN {r}] __»
L5 l(N,rsl\N,rs SKN,r i KN,r ;

(ii) Cramér-von Mises (CvM-) tvpe-statistics. Here, we define

* - 2

B& e [ YN r(t)dt .

, 0<k<r, and define

RN N ) B R LGOS,
Ak’tN,r .q,r ’r[(N k-1)/(N-1) (N h)][GN(l\H, aN(k*l)]

0<k<N-1, then from (3.1), (3.2), (3.6) and (3.7), we have

* _ tr-1 *xp
M, r ® Lkg’x Nk“v

r-1 * ~:
AN k0% T kEx ~N,k) ,

where the Ai also depend on N,r. Here also, if we let

(x)

g ol N, _
N A\J sOs(~N q~N~N s)~J: N, (t)dt , O0sk<r ,

we obtain that

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)




8.

The monotonicity property in (3.5) or (3.10) is then incorporated

in the formulation of the following PCS tests. For a preassigned level

of significance a(0<ca<1), let Kﬁ e and M§ B be defined by

v

P{KN L2 N - a]u }2a> P{K;,r>K;’r’a]HO} : (3.11)

* * *
P{MN’rzl\l;l,r,aIHO} >aq > P{MN,r>l\1N,r,u|H0} 3 (3.12)

Then, for N items under life testing, as the successive failures are

k
ZNk’ we compute Ké,l

S ’ (k) . * (k) :
for the first time, for some k(< r), KN,r is > KN .8 (or M is

observed, at each failure

(or Mlgk)r), kz0. If,

> M ), experimentation is discontinued following 2 along with the
s T30

Nk

rejection of ”O' If, no such k(= r) exists, experimentation is curtailed

following ZNr along with the acceptance of H
*

K and M° are both functions of R
N, N, r =

0 Note that, by definition,

(and [SERRRTS ), and hence,

N
under HO in (2.2), they are distribution-free statistics. Thus. both the

PCS tests based on {Kékil and {M&kl} are genuinely distribution-free
(under HO). Also, by (2.13), (2.19), (3.3) and (3.8), these statistics
remain invariant under any non-singular transformation on the regression

vectors {gi}. That is, if we let gi = go+-£gi, i21, where ¢, is arbi-

~0
trary and T 1is non-singular, and for (2.1), we rewrite x- B B'Ci as

== 1 , 1<1i<N, where x' = E'F-l and YO = 80-1 o’ then repla-

~ ~i
cing in (2.11), (2.13) and (2.19), the Si by 91 and denoting the result-
M . . " g - T > -a1 -
ing statistics by LN,k’ we have LN,k LN,k' V k20 and [ (non-singu

lar). Since, in many cases (viz., the multipsample location problem), the

Si and B in (2.1) are not uniquely defined, this invariance is rather




important and it eliminates the arbitrariness of the choice of the

g

3.,

Thus, the proposed PCS tests are invariant, distribution-free tests. For

small values of N, the exact null distribution of K; or h% can
N,T 5T

be derived by direct enumcrations of the exact distribution of BN (or

§N) over the N! equally likely permutations of (1,...,N) giving rise

to N[r] equally likely realizations of (SNI""’SNr)

The task becomes prohibitively laborious as r (and hence, N) increases;

from (1, .. N -

for this reason, we take recourse to the asymptotic distribution in the

next section.

4. ASYMPTOTIC NULL DISTRIBUTION THEORY

To study the asymptotic distributions of Kﬁ,r and M;,r (both of
which are functionals of the process YN,r’ defined int (S 1)=(3.2)],
first,'We consider the wcak convergence of {YN,r} to appropriate func-
tionals of Brownian motions. Let Wj = {Wj(t), tell, J=l,ccasp be P

independent copies of standard Brownian motions on I, and define

Y = {Y(t), telI} by letting

Y(t) = [25?:1“'?&)]1 . tet . (4.1)

Then, Y belongs to the space C[0,1] with probability 1. At this

stage, we introduce the following (Noether-type) condition:

lim sup) max LT DU E
N+ {ISIEN(Sl-SN) EN (21 ,\\,N)} - @ . (4.2)

Then, we have the following

]
|
{
|
|
|



B o et e
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Theorem 4.1. Under ”O in (2.2), (2.21), (4.2) and the assumptions

made on the scores tn Section 2, as N =+ «,

L 2y » in the J,-topology on D[0,1] . (4.3)

Proof. We have noticed in the last section that the L,\J K
S50y

YV r) remain invariant under any non-singular transformation on the (S
LA

(and hence,

Thus, under (2.16), there exists a non-singular matrix EN such that

L < = = 1
EVCEx lp Saaghl, s 1) s (4.4)
Let then
N N
c. = E.(c.-T.), 1Si<N, so that ) £.=0, Jgc.c!=1 . (4.5
TS N N T L B

Further, in (2.13), replacing gi-gﬁ' by ’Ei’ 1<i<N, the resulting vec-

~32

tor is denoted by for k=0,1,...,N. Then, by (2.19), (4.4) and

N,k
(4.5), we have

o ~ 1
TR A SR BRI e L O SRR | S (4.6)
Iv,k = Oy rdn,k
. 3 ’

Defining {kV r(t), tell by (3.1), we introduce a p-variate sto-
i ’

~ ~ ~ 1 5 | {
chastic process EN,r = {EN’r(t), tell= {(Wé,l(t),...,W£?l(t)) « tell |
by letting
~ _1 ~
= . P
B, e (0 = Al ey B€F 2

Then, by (3.2), (4.6) and (4.7), we obtain that

~ o %
Yy (8 = ()1 (E (D% cel. (4.8)

Hence, if we let W - {(wl(:)....,wp(t))', t ¢ I} where the W, are




«11-

defined prior to (4.1), then to prove (4.3), it suffices to show that

LUV 2 W, in the Jl—topology on Dfo0,17 , (4.9)

and for this, we need to show that (a) the finitc-dimensional distribu-
tions (f.d.d.) of {EN,r} converge to those of W and (b) {EN,r} is
tight. -

Note that under the assumed regularity conditions on the scores, by

Lemma 4.3 of Chatterjce and Sen (1973) and our (3.7),

max * '
Jekey U T 0 A HES, e
As a conse i (kN’r(t)) = jer ngi
quence , lim  t, - = t for every t belonging to [0,1].
b

Hence, if for q(= 1) and Ostl<...<tq51, £=(t1,...,tq)', then

by (4.4), (4.5), (2.17) and (2.18), we have on letting EN r(t) =
k]

~

TR o B IR
~N,r" 1 ]

Ky or (tq) ] that

EEN’T(E) =0 and 'Y'[EN,I'('E)] > ‘I"p 3] ((tjAtZ)) p (4.11)

where V[ ] stands for the dispersion matrix (of order pqXpq) and @
for the Kronecker product. Defining W(f) = [ﬂ'(tl),...,ﬂ'(tq)], it fol-

lows by routine steps that
EN(t) =0 and V[N(E)] =1, 8 ((tjaty)) . (4.12)

Thus, to prove the convergence of f.d.d.'s of {EN r} to those of W , we
. y “~

necd to show only that for any given q(> 1) and ¢t-= (tl,...,tq)ﬂ EN r(L)

is asymptotically normal. Writing




kN,r('t‘) " (kN,r(tl)""’kN,r(tq))' ” (kl,---,qu » (4.13)

and noting (4.7) and (4.10), it suffices to show that (T ,...,? )
S ~N,k1 ~N, k
; has asymptotically a multinormal distribution. We consider the rolled

out vector

w o= @ T(Pi o7 ) (4.14)
1 1 q q

and for a non-null g (gll,...,g o

P , consider the
pl 19’ """ *Epq

linear compound
* e O R ) o T :
UR(®) = gy q = Lin zm=1‘msNidN(1‘ ’ (4.15)

where, by virtue of (2.13), (4.5) and (4.15),

'3

lzm—IXJ 18 mJ] N PRkl & k1 ;

N
N . s-1 1
z 8 gﬂ.]n (1)4-2p_ g e ¥ & (v)
dN(i) s 1[ m=1¢j=1"mj ) N m=1%3=1"mj N-kj V=kj+l N (4.16)

< 3 225 vl 3
for ks_l i sks, s 5 sq

N
L 1 .
Zm_ EA-IE,,,J[\J . k'ZﬂaN(v)‘], qulSN .

V=K.
A=

Thus, if we let

~

fs : Zm ) mS for fTel,ive N ; (4.17)
we have from (4.15)-(4.17) that
U = I g dy(d) (4.18)
N =15, | ’ ;
Ni
unde In {2.20; & ' assumes : ssi
where under “0 in (2.2), SN (SNI""’SNN) assumes all possible

——————————




permutations of (1,...,N) with equal probability (N!)-l. Thus, U;(g)

N

is a simple lincar (anti-) rank statistic. Note that by assumptions (2.3)-
(2.7) and by Lemma 2.2 and Theorem 3.2 of Hajék (1961), the aN(i) satisfy

the condition Q of Hajék (196i), i.e.,

- s « r
lim N 12\1:0 - lim max

T SIS
Noroo | N»w\is11<...<i£NsN N Lo [y () -2yl }= e LRSI

Since, the g .

n are real constants, by (4.16) and (4.19), it follows by

some standard steps that

ZN

lim -1, _ ., __ lim max -1 B .
e e e N»«{lsil<...<i£NsN N Do [dy () -4y }"0 -

where 4 = N'ljzzldN(a)= 0. Also, by (2.3)-(2.7) and (4.16), it follows

that for every g=#0, there exists a finite and positive g*, such that

-1N vy 3 12
N Lo g [y (1)-d1° > g* as N> w. (4.21)

Thus, the dN(i) satisfy the condition Q of Hajék (1961). Further, by
N 2 oN p ~ 2_oN ~~

(4.17), Zizlfi = Xizlz o1 (Cnt) ..zi=lgigi.-p (see (4.5)) and by (4.2),

(4.4), (4.5) and (4.17),

max
1<5 <N fi >0 as N> (4.22)

so that the fi satisfy the Noether condition. Hence, the asymptotic
normality of (4.18) follows directly by an appcé] to the Hajék (1961)
theorem, and the convergence of f.d.d.'s of {EN,T} to W holds.

Chatterjec and Sen (1973) have established the tightness of EN - for

the special case of p=1. As such, using their result coordinate wise,




we obtain that for every €>0 and n>0, there exists a §: 0<§<1

and an integer NO, such that for NZZNO and each j(=1,...,p),

P{Sup[l‘\(J)(L) ‘\(J)(s)l 0<s tss+6£1]>ep'!’}<p'ln i (4.23)

~ -~ 2_sp w03 oqy _w0i) 2
On the other hand, lth,r(t)'EN,r(s)ll -zjzl[wN,r(t)’“N,r(s)] , so that

by (4.23),

P{sup[ll\jN,r(t)—}jN,r(s)ll: Ossstss+§<1]>e}<n, ¥V NsNj, (4.24)

while EN r(0)==9 with probability "1 (by definition). Hence, the proof

of the tightness of {EN r} is complete. Q.E.D.

o 5 (k)
Let now BN,k be the signma-field generated by S (SNl""’SNk

0<sksN, BN 0 being the trivial sigma-field. Then, for every N(= 1),
I

)s

BN X is non-decreasing in k. Further, we define N0 as in (2.10).
3

; " 5 5 . Gek e : "
Lemma 4.2. Under Hy in ZnZl, {IN X’ BN,k’ 0<k<N} <Zs a martingale

for every N(z 1), {LN K By 0<k<N} <Zs a submartingale.

Proof. Under Ho in (2.2), by Lemma 4.1 of Chatterjee and Sen (1973), it

follows directly that for each j (=1,...,p),

[(T(J) Is

kel N,k) = £ a a.e. for every k: 0<k<N-1, (4.25)

and hence, E(T a.e., ¥ 0<ksN-1. The same is true

~N k+ll N k) ~N K

for ; Further by (2.13), (2.15), (2.16) and (Z2.19]), (being

LN,k

and hence, the martingale pro-

N, k’

the Euclidean norm) is convex in TV K
AN,

perty of (EV k} along with the conditional form of the Jensen inequa-
Ny

lity yields the submartingale property of Ly k}' Q.E.D,




For every t: 0<t<1, let us define now

£, 1 [l 2
v(t) = j ¢“(u)du + (1-t) [} ¢(u)du] s (4.26)
0 t
sothat vt) is A in te(0,1), v = 10 v) =0 and vQ) =
lim 2
t11 \)(t) = A¢) = 1.

Lemma 4.3. Under (2.3)-(2.7), k/N > t: te[0,1] <nsures that

2

AN,

= (DT b L) v, as Noe, (4.27)

where the bN k(i) are defined in (2.12).
The proof follows along the lines of the proof of Lemma 4.2 and

Theorem 4.2 of Chatterjec and Sen (1973), and hence, is omitted.

Let us now introduce the following:

)
= e
. sup _ sup{tp 2 4
“p teIlY(t)I - th[§j=1Wj(ti] s (4.28)
1 1

0 2 P I 2 p
e | Yo(t)dt = }* wi(t)dt = )% _w, , 4.29
W, L (t) L S Io1o; (4.29)

where the wj(= éwg(t)dt) arc i.i.d. nonnegative r.v. From Theorem

4.1 we conclude that under the hypothesis of Theorem 4.1,

M& ¥ ? wg and Kﬁ 4 g w; as N> o, (4.30)

The characteristic function (c.f.) g(8) of W, (or any uj, j=1)

is given by [viz., Dugue (1969)]

. s R
g(0) = (Cosvi0)* = TT{1-2i00} 7% u = —5—+—, k21 .  (4.31)
k=1
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Therefore, the c.f. gg(ﬁ) of wg is given by
0 = 2
g (0) = [g(®]P =T I{l-ziﬂuk}'p/“ : (4.32)
¥ k=1

Note that if {Uj, j=1} be a squence of i.i.d.r.v. where Uj has the
central chi-square distribution with p degrees of freedom, then for

every c,

E{exp[ithj]} = [1-2itc]'p/2 2 (4.33)

so that from (4.32) and (4.33), we have

©

wg 2 §k=1{4/n2(2k-1)2}uk . (4.34)

where 2 stands for the equality of distributions. From (4.30) and

(4.34), we conclude that under H as N+ o |

0)
©

M D (/772172 = v

G > SEF . (4.35)

Since, we do not know the distribution of U0 in any closed form, we

0
have obtained (by simulation studics) the empirical percentile points:
these will be reported in Section 7.
For p=1, the distribution of w} = i 1
1 tel
is given by [viz., Billingsley (p.79; 1968)]

lwl(t)l is well-known and

Plwg <x} = X:z_m(-l)k[¢((2k+1)x) - 0((2k-1)x)] , x20, (4.36)

where ¢ is the standard normal d.f. Parallel expressions for p>1 are

not known and remain as challenging problems for probabilists. In Section
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7, we have also derived, through simulation studies, some empirical
values for the percentile points of the d.f. of w; for p- 4.
We may however, notc that, by definition, {Y(t), teI} is a sub-

martingale, so that for every x>0,

2 2
sup OY (t) _ Ox
P{tdc >e } (86>0)

n

sup s
P{te] Y(t)3>x}

infl ” CGYZ(I)}

< mole B
2

_ inf ] -Ox -p/2

- At {e (1-26) } (4.37)

as Y2(l) = Z?=1W§(]) has the central chi-square d.f. with p degrees
of freedom; note that the inequality in (4.37) is based on the Kolmogorov
inequality for submartingales. For x2>>p, the right hand side reduces

to

p/') p _!/xz p/’) il _1 p -!/‘2
(e/p)T' “xPe™ " (=/2ul{/p/2 2V °[p/2} "x'e ) . (4.38)

*

1» we have by (4.36), for every x>0,

On the other hand, as w;2(u

P{w* > x} 2 {w*>x} = 1-Plw*<x}
P 1 1

2[1-0(x)] + 22:=1(-1)k“[¢((2k+1)x)-¢((zk-1)x)] (4.39)

(~ 4[1-¢(x)] when x is not small)

From (4.37)-(4.39), we obtain that

lim
x~)+m

o
[-2x “log wa;‘*x}] =1, forevery p21. (4.40)
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We shall find this result quite useful in Section 6. In passing, we may
remark that in (4.37)-(4.38), instecad of using the Kolmogorov inequality,
we could have used the Doob upcrossing inequality for submartingales and

obtain the upper bound

inff. -6x>.. oY% oy’ (1 Bx?
;';0{20' K et g™ X1, 0x )]}

B
i - T
= 823{20 O ——7§L::: J u2 € :(1 Ze)udu} (4.41)
2P e p72 1 2
u>—§]og 2+x
. 2 . e
. 3‘;5{&0" 2(1-20) P/ 2P/ 2 ([p73) 71 vp/z"c'f‘dv} :

v>(]—26)[x2-%log 2]

For specific values of p (viz., p=2), the right hand side of (4.41)

can be worked out explicitly and the same is somewhat sharper than (4.38).

5. ASYMPTOTIC NON-NULL DISTRIBUTION THEORY

With the intention of studying the (asymptotic) power properties
of the proposed PCS tests, we proceed now to consider the asymptotic non-
null distribution of K;,r and Mﬁ,r' For fixed alternative hypothesis,
these distributions do not exist and we are left with the task of study-
ing the rates of convergence of the powers to 1 — as will be done in the
next section. On the other hand, as is the usual fashion, we may consider
a sequence of local aternative hypotheses, chosen so carefully that under
such a case, the asymptotic non-null distributions are properly defined
and the powers are bounded away from 1,

Towards the end of Section 3, we have observed that K and M}

N,T N, T

are both invariant under non-singular transformations on the regression

I T el Al

--I-IHIIIIIIIIIII“‘
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vectors — hence, we may, without any loss of gencrality, use a canonical

reduction. We assume that there is a triangular array {X. ., 1<ic<N,

N>1} of rowwise independent r.v., where for each N, fe
P{XNisx} = F(X'BO-E'S;H) , 1<isN, - ©o<x<e | (5.1)
where Sﬁi = (cﬁli""’cﬁpi)" i=1ina;N, and
X?=1£§i «§ z?=lgﬁisﬁi g lp t 5.2

and in this case, (4.2) reduces to oo { REX ke

1<jspl1si<N chi} -+ 0. As before,

Hy: B=0 and we frame a sequence {H} of alternative hypotheses by

letting

Hy: (5.1)-(5.2) hold with B=0 . (5.3)

Regarding F in (5.1), we assume that it has an absolutely continuous

density function f with a finite Fisher information

1(f) = J [£' (x)/£(x)]°dF(x) , where £'(x) = ;—x £(x) . (5.4)

- 00

In addition, we defince

%) = - /e ) L, o<u<t (5.5)

so that f;¢0(u)du =0 and fé[¢0(u)]2du = I(f) < ». Also, for se (0,1),
we let .

¢(u) , O<uss ,

b () = ) (5.6)

" - (1_5)-1J ¢(t)dt , s<u<l,
B s
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and define ¢2(u), 0<u<1 in the same way. Let then for se (0.1),
A R Lo .0 I
p(s) = U b, (w)d (Wdul/T1%(f) = U d_(u)¢ (U)du]/lz(f) - (5.6)
0 ) 0 S s

and finally, we definc v(s), 0<s<1 as in (4.26). Then, the follow-

theorem provides the bases for subsequent results of this section.

Theorem 5.1. Under (5.1)-(5.4) and the conditions on the score function

¢ asswned in Section 2, EV ) defined by (4.7) [but for the triangu-

lar array of r.v.'s in (5.1)], converges in law in the J. -topology on

Il

D[0,1] to a p-variate Gaucsian function W+yu, where W is defined

before (4.9) and y = {u(t), tel}l <s given by

5

Bt = BV V() 1D/, 0sts<1 . (5.8)

0 : 2 &
Proof. Let PN and PN be respectively the joint d.f. of (XNI""’XNN)

0
under HO and ”N and let ka and PNk be the same for

for k<N. Then, by the results of Chapter VI of Hijek and Sidak (1967),

FZNI""’ZNk)’

we conclude that under (5.1)-(5.4), {PN} is contiguous to {Pg}, and

. 4 : 0
Pk k <N} is also contiguous to {ka’ k <N}.

Hence, we may proceed along the lines of the proof of Theorem 2 of Sen

this insures that {

(1976a) and show that the tightness of EN o under “0’

same under the contiguous alternatives {HN}. The convergence of f.d.d.'s

insures the

~

of EN r =B to those of W also follows by an appcal to contiguity
s ~

(when {HN} holds) and the carlier part of the proof of Theorem 4.1

along the same line as in Theorem 2 of Sen (1976a). Q«E.Ds




e e

Recalling that W(t) = (Wl(t),...,wp(t))’, tcl and g(t)
(ul(t),...,pp(t))', tel, we obtain from (3.3), (3.6), (4.7), (4.8)

and Theorem 5.1 that under the hypothesis of Theorem 5.1, (under {”N})’
D 51% .

* Sllp ‘P - 2 ‘

SR | RN o

1
* 2 p J ? + 2
M 251 J“i(t) M0} ar . (5.10)

Note that the uj(t), defined by (5.8), are not, in general, linear func-

tions of t, and as in Section 4, the exact distributions for the right

hand sides of (5.9) and (5.10) are difficult to obtain. As a result, it
is difficult to draw more indepth conclusions about the relative perfor-
mance of these PCS tests for contiguous alternatives. For this reason, in
the next section, we take recourse to the Bahadur efficiency, where under
(fixed but) close alternatives, we have some meaningful comparisons of

the different test statistics and score functions.

6. BAHADUR A.R.E. OF PCS TESTS

First, parallel to (4.40), we derive a limiting result for the
tail probability of the Cramér-von Mises type statistics. Note that

by (4.35),

@«
4 0_4 - TR
3 Uy < U, = ;i-u1 + Lo lem2k-nM (6.1)

where each Uj’ j =1, has the central chi-square distribution with p

degrees of freedom, so that foi every A>0,




g0 o 2 5

Pl > 2%} = (2"/2[57'2)'11[ e (2P 15,2
2
A

Some standard analysis on {6.2) lecads us to

lim} 2 WO (e
P Az log ELUj A E] e,

so that from (6.1) and (6.3), we obtain that

lim su 2 0 2
k"'“’p[}{f log P{uy> A }]

3 2
¢ lim sup[_ & Svok p{ul>)\2wz/4}] St

A>®

AZ
On the other hand, by the independence of the Uj’

P{Ei=1{4/1r2(2k-1)Z}Uk > )\2}

A

2
i -ON" . 2
szg{e E[exp © 2:=1{4/ﬁ (2k—l)2}Uk]}
2w o BU 4/1%(2k-1)°
ST

o ¥ 2 . :
32£{° - T—T(I-SG/W“(zk-l)z) P/Z}
k=1

A

k=1

~AYP/2e 2 o TH o232 2
{[1_ {l-<§5]] T—T(l“"Ty SE_:] e TTAT/8+€EA
n" k=2 7 (2k-1)"

[c(c)]cxp{-n212/8¢cxz} ’

A

- 2 2 2
P{cxp[ezk___l{i/'.r (2k-1) }uk] > exp[OA ]} (6>0)

2 2w 3
o M/8-ONT T sy’ k-1 P2 (>0

(6.2)

(6.3)

(6.4)

(6.5)




-
where c(e) (< @) depends on €(0<e<u"/8). Thus, choosing €(> 0)

arbitrarily small, we obtain from (6.5) that

I 2
2 2
llfl»?f[' h‘) log P{Ug>t\‘-ﬂ > 1—[4— =28 ¥ €(0<C<TT2/8) » (6.6)
A2 =

so that from (6.4) and (6.6), we conclude that

lim[ 2 - .Y
o] 37 log P{U, >\ {] =n/4 . (6.7)

In some specific cases, the stochastic convergence of the k<N

Iy, K

can be studied for general alternative [viz., Chatterjee and Sen (1973) for
the two sample problem]. But, in general, it demands extra regularity con-

ditions. Let us assume that Xl,...,XN are independent with d.f.'s

Fl" "FN and defining Ei as in (4.5), we let
= _o-1cN e BN~ 3
Fogy G =N TL P 00, By GO =N eiF (), - @<x<e, (6.8
and defining EN be (2.15), we assume that 1
oy lam =T lim - _ = s
(1) Ke¥es N gN-g and fses S5 both exist , (6.9)
(ii) lim & (x) = F(x) exists for all x (a.e.) (6.10)
N> (N) X 3 -
(ii) M p (x) = B(x) exists for all x (a.e.) (6.11)
N 203 D> S o -

Let us also define Vv(t) as in (4.20) and let

X 0

z(x) = I $(F(y))dD(y) - {1-f='(x)}“§(x)u S(F(x)AF (X)) (6.12)
o X

E(x) = (R(x))"(2(x)) , ~®<x <™, (6.13)




-2
* - su (6] [ce)
E*(x) = m(ypx[-i( )]2 @< x <w (6.14)
0 e i s
£ (x) = U S()’)d\)(l"(.\'))}/V(l’(X)) = SESE S 00 (6.15)

-0

Then, along the lines of Section 5 of Chatterjee and Sen (1973, p. 41),
it can be shown by some standard steps that under (2.3)-(2.6), (2.21) and

(6.9)-(6.12), as N > «

K e T L6)/vE) as., Mﬁ’r+g0(Fl(6)) e (6.16)
1 I > IO NE® as. (6.17)

In particular, for the model {2.1), if the <5 have all .bounded elements

and g is close to 0, then (6.16)-(6.17) simplify to

T
K; . Badey (S'C Q) {0::§6 J & (v\¢0(u)d;} /V(3)} " 0"’8({;
- e men et o}« odislh | (6.19)

where p(s) 1is defined by (5.7) and llgll = B'8;
==l

A f T O 2 "
Mﬁ’r 2225 (g'C IQJU Oz(F()’)d\)(l’(y)):][I(f)/\)z(é)] +o(] 181D
=1 6 5
= [(8'CT BI(H)/V(8)] J p” (w)dv(u) [/v(8) o] |8 6.19)
0

I OHGYO R (6.20)

2 2 8.8
LN,r /AN,r

2 D
i , i 5 % ek 4 .
Finally, note that under ”0 in (2.2), by Theorem 4.1, LN,r/AN,r YU,

and hence (6.3) applies.
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By virtue of Theorem 4.1, (4.30), (4.40), (6.2) (for 111)
and (6.16)-(6.17), we are in a position to adapt the Bahadur efficiency
results (viz., Puri and Sen (1971, pp. 122-123), The BARE (Bahadur ARE)
of the Komogorov-Smirnov type test relative to the terminal test based

on LN,r is given by

ex & e 1e@ 1o

e
L4205

n

= {_mxi}f‘-’l (5)[&(x)1_}/ac‘r~"1(a)) e (6.21)

where the equality sign holds (among other cases) when £&(x) 1is non-

decreasing in x. Similarly, the BARE of the Cramér-von Mises type

test with respect to the terminal test based on LN - is
ey.p = EFTEEFE T @10/
TF e . 2oy 3
o {I [E)/E(F (6))]dv(F(y))J/v(6) [n7/4] . (6.22)

Unlike (6.21), (6.22) may not be greater than or equal to one in all
cases. We shall make more comment on it later on. Finally, the BARE of

the Kolmogorov-Smirnov type with respect to the Cramér-von Mises type is

given by
N Y SN G ON AT GRIGH)
2 sup o] .I‘T_l(‘s) o
= (4/'“ ){-W<X;}71'](5)E(x)/ {\)(6)} I g()’)d\)(l:(y)) } 3 (6.?3)

An obvious lower bound for (6.23) is 4/n2 = 0.4053.




Let us now confine ourselves to local alternatives for which (6.18)-

(6.20) hold and in this case, the limiting BARE reduces to

nz 6 2 2
e& T jr'[J - (wdvu))/[v(8)p ()] ; (6.24)
» 0
i = o’ ) 2w ) s 6.25
Sk T Zlosess® )4 Joo (Wdv(u) ) ; (6.25)
* . sup 2 t;/ 2 s > 1) & 2%
ek, 7 = JostssP (B)|/p (8) (1) . (6.26)

In the context of optimality of score functions for PCS rank tests
for simple regression, Chatterjee and Sen (1973) and Sen (1976b) have
studied the optimality of ¢0(u), defined by (5.5). It follows from
(5.4)-(5.7) that for ¢ = ¢0 (upto a scalar constant),
v(t) = p(t) = U:wg(u)]?du}/f:[¢°(u)]2du . BER L, (6.27)

so that we have from (6.24)-(6.27),

. e = 5.0,
eﬁ’T =T /12 = 0.8225
e* = 12/'"2 = 1.2159
K,M
* . ]
K, T

In this case, we are naturally inclinced towards using the Komogorov-

Smirnov type tests on the ground of the limiting BARE. However, the
. ; 0

picture can be different when ¢+ ¢ . For example, supposc one uses

the exponentinl score ¢(u) = -1-log(l-u), 0<u<1, whilc the under-

: 4 ’ : ; & : 2
lying distribution is logistic. In this case, Ci M reduces to 15/2n" =




=2 T

0.7599, so that the Cramér-von Mises type test appears to have an

edge over the Kolmogorov-Smirnov type test. For this example, cﬁ T
i ]

2 S - : 1.5
27 /15 = 1.3159, so that the terminal test is also not as efficient as
the Cramér-von Mises type test. An opposite picturc holds when one uses

the Wilcoxon scores (viz., ¢(u) = Y12 (u-1/2), 0<u<1) while the under-

= 2':~ i = ')2_
Sp= 27 /35 = 0.5640 and % M 35/21° =

1.2665. These exanples suggest that whereas the BARE CQ T or CK y may
3

lying d.f. is exponential - here e*

fluctuate quite a bit for different score functions and underlying d.f.'s,
e;_rz I remains true under quite gcneralrconditions, tending to advocate
Ny

the use of Komogorov-Smirnov type of PCS tests.

7. SIMULATED PERCENTILES OF
NULL DISTRIBUTIONS \h AND K*

The distributions of M; and K& have been shown to converge
. T AT
weakly to some functionals of the standard Wiener process under the null
hypothesis and to those of the drifted Wiener process under contiguous
alternatives, under certain regularity conditions. As we have mentioned
in Section 4, the null distributions of these processes are not available
in workable form. We, therefore, derive in this section a few percentile

values of these distributions empirically through simulation studies.

Consider n independent observations, Yl,. .,Yn from the stan-
dard normal distribution. Let
K
S = LY. » 1sksn,
i=1
S0 = 0 by convention . (V1)
——m




We define the stcchastic process Wn = {Wn(t), te [0,1]} by letting

1
- e
Wn(t) n Sn(t) , (7:2)
where n(t) = max{k: k < tn}.
We note that the sample process Wn is right continuouvs with the left-

hand limit and hence belongs to the metric space D[0,1] with the pro-

perties

EW (t) =0,

n

szct) i peY (7.3)

BN (06 (t') =n ' [n(tatn)], t,t'e [0,1]

where [nt] and [n(tAt')] denote integral parts of nt and n(tat')
respectively. The maximum jump of the process is given by

X, | 0T E ™

max
= a.s.

1<k<n V/l:l- . v/]-';

+0 a.s., @as n > o, (7.4)

Consequently, as n gets large the process Wn has a continuous sample
path a.s. and has the structure of the standard Brownian motion process
W= {W(t), te[0,1]}.

Let now [{y,. }" i

1§’ §=1° =1,...,p] be independent random samples each

of size n from N(0,1). Then by Donsker's theorem [Billingsley (pp.

65-77; 1968)]
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max ® c D
ocken | L Win(G/m| > wy s
i=1
P n-1
el w?n(k/n) 2.7, (7.5)
i=1 k=0 ! P
1k
where W. (k/n) =n ) Y.., k=0,...,n and i=1,...,p and w* and
in jop 1 p

wg are given by (4.28) and (4.29) respectively.

For purposes of the simulation studies, we have generated the stan-
dard normal deviates by using IBM scientific subroutine GAUSS. The sam-
ple size n has been taken to be 1000 and the cmp%ricall (null) distri-
butions of the two processes have been derived through 1000 independent
repetitions. For details, see Majumdar (1976). 1In Table 1 and Table 2
below, we have furnished a few simulated values of the right tails of
the two distributions. For p=1, we have given exact percentile values

of w; by using the approximation

p{SgP|W(t)| > x} £ 4(1-9(x)) , (7.6)

where @(x) 1is the probability integral of the standard normal distribu-
tion.

TABLE 1: Simulated values of the null distribution of w- for
selected values of p and «a P

T e e e e ey

05 2.24 2.79 | S5.05 3.3
.10 1,96 | 2.35 | 2.78 | 3.04
T S i IE Y ISP S

*Exact
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TABLE 2: Simulated values of the null distribution of w for

selected values of p and o« P
F::;;::i;:;:T:::::::::z::::rz:::::;g:;
o 1 2 3 4
.01 2.87 | 4.06, ] 5.57 | 6.54
.05 1.66 | 2.67 | 3.49 | 4.33
J10 1.19 | 2.00 | 2.80 | 3.64

8. SOME GENERAL REMARKS

As has been mentioned in Section 1, our model (2.1) includes the
multi-sample location model as a special case. Let in, 1 si.Snj be
i.i.d.r.v. with a continuous d.f. Fj(x), for 0<j<p(21) and let

= 3] 1t1 = £1 S = .
N no'*... +n . Rewriting XOi Xi, 1<1 ng and xij X"o+"'+"j_1+1’
lsi.snj, 1<j<p, and assuming the conventional location model where

F (x) = F(x-6.), 0<j<p, we observe that (2.1) holds with BJ. = Gj - 90.

j
1 sj SP, B = 6 and ¢, =

s =G =G Blaom =0 o =RNI0 e 0)Y
1 M, ~n0+1 nying
= o = (] 5 : s
...’2"0+"‘+np-1+1 = ... =gy (0,...,0,1)'. The null hypothesis “0 in
(2.2) insures that F0= s Fp. If, we assume that the sample sizes
no,...,np satisfy the conditions
lim y-l, oa.:0<h, <1, Vosjsp, (8.1)
Noeo SRR j
= -l
» 7 -
then I = (AO,...,XP)' as N »> o and, by (2.15), N ((qu K

2 ) <
Aq))k,q=1,...,p’ so that (2.16) holds. Thus, the proposcd PCS rank

tests apply to the multi-sample location problem as well.




In order to test homogeneity of k(=p+1) samples for right-censored

data (fixed-plan censoring), with the smallest r out of N observations
of the combined sample being considered, Basu (1967) has studicd a genera-

lized version of the Kruskal-Wallis test. The asymptotic chi-squarec dis-

2 2
N,r/AN,r

lar model) follows readily from our Theorems 4.1 and 5.1. In his scheme,

tribution of his statistic (eqivalent to our L for his particu-
carly termination of experimentation (prior to the r-th order statistic)
has not been advocated, while in our PCS procedurcs, this is no problem.

One can use Kﬁ s OF M¥ . The BARE results of Section 6 suggests that

N,1
3 2 2
% 1 - 3 3 1
using kN,r instead of LN,r/AN,r allows an early termination without

any loss of the asymptotic efficiency.

Suppose now that instead of a preassigned number r of failures,
the experiment is designed to continue at most for a period of y time-
units. Then, r(y), the number of failures occurring in the time-period
y, 1is itself a (non-negative integer-valued) random variable. As in
Section 2 of Chatterjee and Sén (1973), the distribution theory of
lm,r(y) or Kﬁ,r(y) can be developed [under the null hypothesis “0
in (2.2)] under a conditional setup, given r(y)=r. However, in prac-
tice, this conditional argument requires some knowledge on the distribu-
tion of r(y) so that the stochastic limit of N'lr(y) is fairly known
in advance of experimentation (as the same is nceded to define
Aﬁ,r for both the PCS tests). We may surmount this problem by work-
ing with an upper bound for N-lr(y) {allowing chance fluctuation],

whenever feasible. In the Department of Biostatistics, University of

North Carolina, Chapel Hill, a seven-yecar project on the effect of high
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cholesterol on the risk of heart attack is under study. Male patients
(over the age 35) are randomly allocated to either the control or treat-
ment groups and the survival pattcrns of the two groups are being pro-
gressively studied. From independent sources (viz., U.S. Life tables),
the seven year mortality rate for the particular age-pattern is roughly
known to be about 11%, so that for a sample of size N, an upper (95%
or 99%) confidence limit can be set on the actual number of failures in
this study period, and with that upper limit, we can set our proposed
PCS tests. This procedure, though a bit conservative, performs quite

well (in scope as well as in performance) as compared tc some parametric

tests based on particular forms of failure distributiocns.
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